где А, w, j — постоянные. Величина А (максимальное значение s ) называется амплитудой. Так как значения cos (wf — j) повторяются при возрастании аргумента на 2p, то wТ =2p и, следовательно,

  w=2p/Т=2pn.

  Величина w называется круговой, пли циклической, частотой, равна числу К. за 2p единиц времени. Функция времени wt — (называется фазой К., постоянная j — начальной фазой (часто её называют просто фазой). На изображено затухающее К.

  s = Ae- d t cos (wt — j),

  где А, d, w,j — постоянные. А называется начальной амплитудой, Ae- d t мгновенным значением амплитуды. d — коэффициент затухания, t= 1/d — временной постоянной (см. также Декремент затухания ). Величина d здесь положительна. При отрицательном знаке d К. является нарастающим. Величины wt — (,w, j имеют те же названия, что и в случае синусоидального К. Хотя затухающее К. не является точно периодическим, величина Т = 2 p/w также называется периодом.

  В физике и радиотехнике большое значение имеют модулированные К., то есть К. вида

  s=A (t ) cos [ wt— w(t )],

  причём функции A (t ), w(t ) меняются медленно по сравнению с coswt (w — постоянная). Если j(t ) = const. то К. называются амплитудно-модулированным (рис. 3 , ж), если A (t ) = const (рис. 3 , з) — модулированным по фазе (или по частоте; см. Модуляция колебаний ). В общем случае () К. модулированы как по амплитуде, так и по фазе. соответствуют периодической амплитудной и фазовой модуляции: A (t ) и j(t) — периодические функции. Важное значение в технике (радиотелефония, телевидение) и в физике имеет случай, когда A (t ) или j(t ), или же обе одновременно являются так называемыми случайными функциями (). Часто в природе и технике встречаются беспорядочные К. (), например белый свет, акустический и электрический «белый» шум и т.п.

  Ни в природе, ни в технике никогда не встречаются строго периодические (в частности, строго гармонические) К. Тем не менее гармонические К. весьма важны по двум причинам. 1) В природе и технических устройствах часто возникают К., мало отличающиеся на протяжении достаточно большого времени от гармонических. 2) Многие физические системы, принадлежащие к классу спектральных приборов в широком смысле этого слова или гармонических анализаторов, преобразуют произвольные К. в набор К., близких к гармоническим. Когда говорят о гармонических К., всегда имеют в виду К., лишь близкие к гармоническим. Гармонические К. даже одинаковой физической природы (К. давления воздуха, напряженности электрического поля), но различной частоты могут обладать (наряду с аналогичными) резко различающимися свойствами; они могут совершенно по-разному воздействовать на те или иные физические системы и живые организмы и, в частности, на органы чувств человека и животных (см. Слух , Зрение ).

  Возникновение колебаний. Здесь рассматривается возникновение К. в системе, не получающей К. извне, а являющейся источником К. В случае, когда система приходит в К. под действием К., подводимых извне, говорят не о возникновении К., а о воздействии К. на систему и о преобразовании их системой. В пассивных (не содержащих источников энергии) системах такое воздействие вызывает вынужденные колебания . Существует 3 основных типа К. в системах, являющихся источниками К. 1) Свободные (или собственные) К., происходящие, когда система предоставлена самой себе после нарушения равновесия вмешательством извне, например К. пружинного маятника (рис. 1 , б) и К. тока в электрическом контуре (рис. 2 ).

  Свободные К. пружинного маятника и колебательного контура относятся к частному типу свободных К. в линейных колебательных системах (то есть системах, обладающих параметрами, практически неизменными, и описываемых с достаточной точностью линейными дифференциальными уравнениями) с одной степенью свободы. В линейных системах с N степенями свободы (N> 1) свободные К. в каждой точке являются суперпозицией N К. (см. Нормальные колебания ). В линейных распределённых системах (если отвлечься от атомистической структуры вещества), например струне, стержне, трубе, а также в электрическом кабеле, объемном резонаторе, свободные К. в каждой точке являются суперпозицией бесконечного числа К. Если восстанавливающая сила, т. е. сила, возвращающая систему к положению равновесия, не пропорциональна отклонению от него, свободные К. описываются нелинейным дифференциальным уравнением, например в случае маятника, когда амплитуду нельзя считать очень малой. Такие системы называются нелинейными. Здесь, в отличие от линейных систем, свободные К. (даже если не учитывать затухания) не синусоидальны, и, кроме того, период их зависит от начальных условий, например у маятника период свободных К. тем больше, чем больше амплитуда. Лишь в пределе, когда она стремится к нулю, система становится линейной, а её К. — изохронными: период не зависит от амплитуды.

  2) Флуктуационные К., происходящие в результате теплового движения вещества. Поскольку маятник, груз, контур участвуют в тепловом движении материи, они совершают никогда не прекращающиеся флуктуационные К. (см. Флуктуации ) один из видов броуновского движения . Эти К. особенно легко обнаружить и наблюдать в случае колебательного контура, в котором происходят флуктуации напряжения и тока, применяя усилитель с большим коэффициентом усиления и осциллограф . Флуктуационные К. в колебательных контурах, антеннах и т.д. — важнейший фактор, ограничивающий чувствительность радиоприёмников.

3) Автоколебания — незатухающие К., которые могут существовать при отсутствии переменного внешнего воздействия, причем амплитуда и период К. определяются только свойствами самой системы и в определенных пределах не зависят от начальных условий. Примерами являются: К. маятника или баланса часов, поддерживаемые опусканием гири или раскручиванием спиральной пружины, звучание духовых и смычковых музыкальных инструментов, К. всевозможных электронных ламповых генераторов, применяемых в радиотехнике, и др. Подробнее см. Автоколебания .

  Распространение колебаний. Колеблющийся маятник () приводит в движение раму, на которой он подвешен; рама приводит в движение стол и так далее. Таким образом, К. не остаются локализованными, а распространяются, охватывая все окружающие тела. Явление распространения К. гораздо сильнее выражено в случае более быстрых механических (звуковых) К. — струны, колокола, воздуха в трубах музыкальных духовых инструментов и тому подобное. Здесь распространение К. происходит главным образом через воздух. Вокруг источников электрических К. возникают переменные электрические и магнитные поля, распространяющиеся вдаль от точки к точке через диэлектрики (в том числе вакуум). Процессы распространения К. (а также всяких возмущений) называются волнами.

  Общий характер колебательных воздействий. Прогиб балки под действием постоянной нагрузки тем больше, чем больше нагрузка; сила тока, возникающего под действием постоянной эдс, тем больше, чем больше эдс, и так далее. В случае колеблющейся нагрузки, переменной эдс и др. колебательных воздействий дело обстоит гораздо сложнее — здесь имеют место вынужденные колебания. Результат воздействия в этом случае зависит не только от его интенсивности, но также в большой степени от его темпа, от того, как оно изменяется со временем. В этом состоит одна из основных и характерных черт К.