Конески Блаже
Ко'нески Блаже (родился 19.12.1921, Небрегово, Южная Македония), македонский писатель, филолог. Президент Македонской АН. После освобождения Македонии от фашистской оккупации — на педагогической и редакторской работе. Был председателем Союза писателей Югославии (1961—64). Писать начал в 1939. Автор поэм («Мост», 1945, и др.), сборников стихов («Земля и любовь», 1948, «Вышивальщица», 1955, и др.). Сборник рассказов «Виноградники» (1955) содержит зарисовки нравов старой провинции и психологические этюды на темы современности. К. создал первую научную «Грамматику македонского языка» (1952—54). Автор ряда историко-литературных работ.
Соч.: Избрани дела, кн. 1—7, Скопje, 1967; Кон македонската преродба. Македонските учебници од 19 век, 2 изд., Скопje, 1959.
Конецгорское селище
Конецго'рское се'лище, остатки неукрепленного родового посёлка 4—3 вв. до н. э. на правом берегу р. Чусовой, близ деревни Конецгор Пермского района Пермской области РСФСР. Принадлежало одному из племён ананьинской культуры . Население занималось земледелием, скотоводством, охотой, знало металлургию меди и железа. Раскопками А. В. Збруевой в 1935—37 вскрыты остатки полуземляночного коллективного жилища (длина свыше 40 м, ширина около 6 м ) с 9 очагами. Найдены каменные, бронзовые и железные орудия, части конской упряжи, зернотёрки, обломки глиняных человеческих фигурок и посуды, а также бронзовая статуэтка египетского бога Амона.
Лит.: Збруева А. В., История населения Прикамья в ананьинскую эпоху, М.— Л., 1952 (Материалы и исследования по археологии СССР, № 30).
Конецкий Виктор Викторович
Коне'цкий Виктор Викторович (родился 6.6.1929, Ленинград), русский советский писатель. Член КПСС с 1953. Значит, часть произведений К. посвящена труду и быту советских моряков-полярников: сборники рассказов и повестей «Сквозняк» (1957), «Камни под водой» (1959), «Завтрашние заботы» (1961), «Луна днём» (1963), «Огни на мёрзлых скалах» (1964), «Над белым перекрёстком» (1966), «Кто смотрит на облака» (1967), путевые заметки «Солёный лёд» (1968—69), «210 суток на океанской орбите» (1972) и др. Автор сценария кинокомедии «Полосатый рейс» (в соавторстве с А. Я. Каплером, 1961) и др.
Соч.: Повести и рассказы. [Послесл. И. Кузьмичева], Л., 1970.
Лит.: Лакшин В., Робкие мужчины, «Новый мир», 1961, №8; Аннинский Л., Соль воды, «Юность», 1970, № 6; Русские писатели-прозаики. Биобиблиографический указатель, т. 7 (доп.), ч. 1, М., 1971.
Конечная математика
Коне'чная матема'тика, область математики, занимающаяся изучением свойств структур финитного (конечного) характера, которые возникают как внутри математики, так и в её приложениях. К числу таких конечных структур могут быть отнесены, например, конечные группы, конечные графы, а также некоторые математические модели преобразователей информации, конечные автоматы, машина Тьюринга и т. п. Иногда допускают расширение предмета К. м. до произвольных дискретных структур и приходят к дискретной математике, отождествляя последнюю с К. м. К таким структурам могут быть отнесены некоторые алгебраические системы, бесконечные графы, определённые виды вычислительных схем, клеточные автоматы и т. д. В качестве синонима понятий «К. м.» и «дискретная математика» иногда употребляется термин «дискретный анализ». Ниже термин «К. м.» понимается в широком смысле, включающем дискретную математику.
В отличие от К. м., классическая математика в основном занимается изучением свойств объектов непрерывного характера. Использование классической математики или К. м. как аппаратов исследования связано с тем, какие задачи ставит перед собой исследователь и, в связи с этим, какую модель изучаемого явления он рассматривает, дискретную или непрерывную. Так, например, при нахождении массы радиоактивного вещества в данный момент с определённой точностью можно считать, что процесс изменения массы при радиоактивном распаде носит непрерывный характер, и в то же время ясно, что на самом деле этот процесс дискретен. Само деление математики на классическую и дискретную в значительной мере условно, поскольку, например, с одной стороны, происходит активная циркуляция идей и методов между ними, а с другой — часто возникает необходимость исследования моделей, обладающих как дискретными, так и непрерывными свойствами одновременно. Следует отметить также, что в математике существуют подразделы, использующие средства дискретной математики для изучения непрерывных моделей (например, алгебраическая геометрия ) и, наоборот, часто средства и постановки задач классического анализа используются при исследовании дискретных структур (например, асимптотические вопросы в теории чисел). Эти примеры указывают на известное слияние рассматриваемых областей.
К. м. представляет собой важное направление в математике, в котором можно выделить характерные для К. м. предмет исследования, методы и задачи, специфика которых обусловлена в первую очередь необходимостью отказа в К. м. от основополагающих понятий классической математики — предела и непрерывности — и в связи с этим тем, что для многих задач К. м. сильные средства классической математики оказываются, как правило, мало приемлемыми. Наряду с выделением К. м. путём указания её предмета можно также определить К. м. посредством перечисления подразделов, составляющих К. м. К ним в первую очередь должны быть отнесены комбинаторный анализ , графов теория , теория кодирования , теория функциональных систем и некоторые другие. Часто под термином «К. м.», предполагая, что её предмет исчерпывается конечными структурами, понимается именно совокупность перечисленных дисциплин. Как отмечалось, возможно и более широкое толкование К. м. за счёт расширения понимания её предмета. С этой точки зрения к К. м. могут быть также отнесены как целые разделы математики, например математическая логика, так и части таких разделов, как теория чисел, алгебра, вычислительная математика, теория вероятностей и другие, в которых изучаемый объект носит дискретный характер.
Элементы К. м. возникли в глубокой древности и, развиваясь параллельно с другими разделами математики, в значительной мере являлись их составной частью. Типичными для того периода были задачи, связанные со свойствами целых чисел и приведшие затем к созданию теории чисел. К их числу могут быть отнесены отыскания алгоритмов сложения и умножения натуральных чисел у древних египтян (2-е тыс. до н. э.), задачи о суммировании и вопросы делимости натуральных чисел в пифагорийской школе (6 в. до н. э.) и т. п. Позже (17—18 вв.), в основном в связи с игровыми задачами, появились элементы комбинаторного анализа и дискретной теории вероятностей (Б. Паскаль , П. Ферма и др.), а в связи с общими проблемами теории чисел, алгебры и геометрии (18—19 вв.) возникли важнейшие понятия алгебры, такие как группа, поле, кольцо и др. (Ж. Лагранж , Э. Галуа и др.), определившие развитие и содержание алгебры на много лет вперёд и имевшие по существу дискретную природу. Стремление к строгости математических рассуждений и анализ рабочего инструмента математики — логики привели к выделению ещё одного важного раздела математики — математической логики (19— 20 вв.). Однако наибольшего развития К. м. достигла в связи с запросами практики, приведшими к появлению новой науки — кибернетики и её теоретической части—математической кибернетики (20 в.). Математическая кибернетика, непосредственно изучающая с позиций математики самые разнообразные проблемы, которые ставит перед кибернетикой практическая деятельность человека, является мощным поставщиком идей и задач для К. м., вызывая к жизни целые новые направления в К. м. Так, прикладные вопросы, требующие большой числовой обработки, стимулировали появление сильных численных методов решения задач, оформившихся затем в вычислительную математику , а анализ понятий «вычислимость» и «алгоритм» привёл к созданию важного раздела математической логики — теории алгоритмов. Растущий поток информации и связанные с ним задачи хранения, обработки и передачи информации привели к возникновению теории кодирования; экономические задачи, задачи электротехники, равно как и внутренние задачи математики, потребовали разработки теории графов; задачи конструирования и описания работы сложных управляющих систем составили теорию функциональных систем и т. д. В то же время математическая кибернетика широко использует результаты К. м. при решении своих задач.