Комбинаторная топология
Комбинато'рная тополо'гия, часть топологии , в которой топологические свойства геометрических фигур изучаются при помощи их разбиений на более элементарные фигуры (например, разбиение полиэдров на симплексы ) или при помощи покрытий системами множеств. Этот метод применим, как показывают работы главным образом советских учёных, в самых широких предположениях об изучаемых фигурах.
Лит.: Александров П. С., Комбинаторная топология, М. — Л., 1947; Понтрягин Л. С., Основы комбинаторной топологии, М. — Л., 1947.
Комбинаторные изменения звуков
Комбинато'рные измене'ния зву'ков, результат влияния окружающих звуков в речевом потоке. Таковы ассимиляция , диссимиляция , аккомодация — приспособление согласных к гласным и гласных к согласным («игры — отыгран»), выпадение звука («сонце» вместо «солнце»), гаплология — выпадение одного из одинаковых или подобных слогов («знаменосец» из «знаменоносец»), стяжение двух смежных гласных в один (русское диалектное « быват» из «бывает»), афереза — отпадение начального гласного слова после конечного гласного предшествующего слова (англ. I'm вместо I am — «я есть»), элизия — отпадение конечного гласного слова перед начальным гласным следующего слова (франц. I' ami вместо le ami — «друг»), эпентеза — вставка звуков (просторечное «Ларивон», «радиво»), метатеза — перестановка («Фрол» из лат. Florus).
Комбинаторный анализ
Комбинато'рный ана'лиз, комбинаторная математика, комбинаторика, отдел математики, в котором изучаются вопросы, связанные с размещением и взаимным расположением частей конечного множества объектов произвольной природы (а также бесконечных множеств, удовлетворяющих некоторым условиям конечности).
Идеи комбинаторного характера имеют самое широкое распространение в математике, в таких её разделах, как теория вероятностей, теория чисел, алгебра и др. Задачи К. а. известны уже с глубокой древности. В развитие К. а. большой вклад внесли многие математики. Однако в самостоятельную научную дисциплину К. а. стал оформляться лишь в 20 в.
К. а. тесно связан с теорией графов, теорией конечных автоматов и другими отраслями математики. Его результаты применяются при планировании и анализе научных экспериментов, кодировании сообщений, в линейном и динамическом программировании, в математической экономике и многих других областях науки и техники. Различают три типа проблем К. а. Задачи на перечисление. В задачах такого типа интересуются количеством возможных размещений, удовлетворяющих различным условиям, конечного множества объектов. Одним из типичных примеров такого рода задач является задача о размещении каких-либо n частиц в N ячейках; как частицы, так и ячейки могут быть различимыми и неразличимыми, и это обусловливает различные ответы на поставленную задачу. Для решения разнообразных перечислительных задач, встречающихся на практике, разработаны мощные методы; среди них основные — метод производящих функций и метод перечисления Пойа.
Задачи о существовании и построении. В задачах такого рода интересуются, существует ли конфигурация частей конечного множества, обладающая некоторыми заданными свойствами, и если да, то как её построить. Например, существует ли такая система подмножеств (блоков) данного конечного множества, что любые два различных элемента множества встречаются вместе в этих блоках заданное число раз. Такие системы называют блок-схемами. Они и им подобные конфигурации интенсивно изучаются в К. а. При этом большую роль играют теоретико-числовые и алгебраические методы.
Задачи о выборе. В задачах этого типа исследуются условия, при которых можно осуществить такой выбор подмножества или некоторой совокупности частей множества, чтобы удовлетворялись некоторые требования, носящие чаще всего оптимальный характер. Например, пусть дано множество и имеется некоторая система подмножеств; при каких условиях можно выбрать по одному элементу в каждом подмножестве так, чтобы все эти элементы были попарно различны? Это — задача о системе различных представителей для системы подмножеств. При решении задач о выборе, наряду с чисто комбинаторными соображениями, также существенно применяется алгебраический аппарат.
Лит.: Риордан Дж. Введение в комбинаторный анализ, пер. с англ., М., 1963; Раизер Г. Дж. Комбинаторная математика, пер. с англ., М., 1966.
В. Е. Тараканов.
Комбинационное рассеяние света
Комбинацио'нное рассе'яние све'та, рассеяние света веществом, сопровождающееся заметным изменением частоты рассеиваемого света. Если источник испускает линейчатый спектр, то при К. р. с. в спектре рассеянного света обнаруживаются дополнительные линии, число и расположение которых тесно связаны с молекулярным строением вещества. К. р. с. открыто в 1928 советскими физиками Г. С. Ландсбергом и Л. И. Мандельштамом при исследовании рассеяния света в кристаллах и одновременно индийскими физиками Ч. В. Раманом и К. С. Кришнаном при исследовании рассеяния света в жидкостях (в зарубежной литературе К. р. с. часто называют эффектом Рамана). При К. р. с. преобразование первичного светового потока сопровождается обычно переходом рассеивающих молекул на другие колебательные и вращательные уровни (см. Молекулярные спектры ), причём частоты новых линий в спектре рассеяния являются комбинациями частоты падающего света и частот колебательных и вращательных переходов рассеивающих молекул — отсюда и назв. «К. р. с.».
Для наблюдения спектров К. р. с. необходимо сконцентрировать интенсивный пучок света на изучаемом объекте. В качестве источника возбуждающего света чаще всего применяют ртутную лампу, а с 60-х гг. — лазерный луч. Рассеянный свет фокусируется и попадает в спектрограф, где спектр К. р. с. регистрируется фотографическим или фотоэлектрическим методами.
К. р. с. наиболее часто связано с изменением колебательных состояний молекул. Такой спектр К. р. с. состоит из системы спутников, расположенных симметрично относительно возбуждающей линии с частотой n. Каждому спутнику с частотой n — ni (красный, или стоксов, спутник) соответствует спутник с частотой n + ni (фиолетовый, или антистоксов, спутник). Здесь ni — одна из собственных частот колебаний молекулы. Таким образом, измеряя частоты линий К. р. с., можно определять частоты собственных (или нормальных) колебаний молекулы, проявляющихся в спектре К. р. с. Аналогичные закономерности имеют место и для вращательного спектра К. р. с. В этом случае частоты линий определяются вращательными переходами молекул. В простейшем случае вращательный спектр К. р. с. — последовательность почти равноотстоящих симметрично расположенных линий, частоты которых являются комбинациями вращательных частот молекул и частоты возбуждающего света.
Согласно квантовой теории, процесс К. р. с. состоит из двух связанных между собой актов — поглощения первичного фотона с энергией h n (h — Планка постоянная ) и испускания фотона с энергией h n' (где n' = n ± ni ), происходящих в результате взаимодействия электронов молекулы с полем падающей световой волны. Молекула, находящаяся в невозбуждённом состоянии, под действием кванта с энергией h n через промежуточное электронное состояние, испуская квант h (n — ni ), переходит в состояние с колебательной энергией h ni . Этот процесс приводит к появлению в рассеянном свете стоксовой линии с частотой n — ni (). Если фотон поглощается системой, в которой уже возбуждены колебания, то после рассеяния она может перейти в нулевое состояние; при этом энергия рассеянного фотона превышает энергию поглощённого. Этот процесс приводит к появлению антистоксовой линии с частотой n + ni ().