Космовидение
Космови'дение, космическое телевидение, непосредственная передача и приём по сети телевизионного вещания изображений с борта космического аппарата, находящегося в космическом пространстве или на поверхности др. планеты. Радиосигналы изображений, посланные бортовой аппаратурой космической станции, принимаются земной станцией радиосвязи и затем передаются на телецентр, откуда ретранслируются по сетям телевидения СССР, стран Европы и Америки. Начало К. положено передачей телевизионных изображений лётчиков-космонавтов А. Г. Николаева и П. Р. Поповича с борта космических кораблей «Восток-3» и «Восток-4» в августе 1962. Наибольшая дальность К. достигнута в декабре 1968 при передаче изображения во время облёта Луны космическим кораблём «Аполлон-8» с космонавтами Ф. Борманом, Дж. Ловеллом и У. Андерсом на борту.
Космогония
Космо'гония (греч. kosmogonia, от kosmos — мир, Вселенная и gone, goneia — рождение), область науки, в которой изучается происхождение и развитие космических тел и их систем: звёзд и звёздных скоплений, галактик, туманностей, Солнечной системы и всех входящих в неё тел — Солнца, планет (включая Землю), их спутников, астероидов (или малых планет), комет, метеоритов. Изучение космогонических процессов является одной из главных задач астрофизики. Поскольку все небесные тела возникают и развиваются, идеи об их эволюции тесно связаны с представлениями о природе этих тел вообще. В современной К. широко используются законы физики и химии.
Космогонические гипотезы 18—19 вв. относились главным образом к происхождению Солнечной системы. Лишь в 20 в. развитие наблюдательной и теоретической астрофизики и физики позволило начать серьёзное изучение происхождения и развития звёзд. В 60-х гг. 20 в. началось изучение происхождения и развития галактик, природа которых была выяснена только в 20-х гг.
Процессы формирования и развития большинства космических тел и их систем протекают чрезвычайно медленно и занимают миллионы и миллиарды лет. Однако наблюдаются и быстрые изменения, вплоть до процессов взрывного характера. При изучении К. звёзд и галактик можно использовать результаты наблюдений многих сходных объектов, возникших в разное время и находящихся на разных стадиях развития. Однако, изучая К. Солнечной системы, приходится опираться только на данные о её структуре и о строении и составе образующих её тел.
Очерк истории космогонических исследований. После общих идей о развитии небесных тел, высказанных ещё греческими философами 4—1 вв. до н. э. (Левкипп, Демокрит, Лукреций), наступил многовековой период господства теологии. Лишь в 17 в. Р. Декарт отбросил миф о сотворении мира и нарисовал картину образования всех небесных тел в результате вихревого движения мельчайших частиц материи. Фундамент научной планетной К. заложил И. Ньютон , который обратил внимание на закономерности движения планет. Открыв основные законы механики и закон всемирного тяготения, он пришёл к выводу, что устройство планетной системы не может быть результатом случайного стечения обстоятельств. В 1745 Ж. Бюффон высказал гипотезу, что планеты возникли из сгустков солнечного вещества, исторгнутых из Солнца ударом огромной кометы (в то время кометы считались массивными телами). В 1755 И. Кант опубликовал книгу «Всеобщая естественная история и теория неба...», в которой впервые дал космогоническое объяснение закономерностям движения планет (см. Канта гипотеза ). В конце 18 в. В. Гершель , наблюдая небо в построенные им большие телескопы, открыл туманности овальной формы, обладающие различными степенями сгущения к центральному яркому ядру. Возникла гипотеза об образовании звёзд из туманностей путём их «сгущения». Опираясь на эти наблюдения Гершеля и на закономерности движения планет, П. Лаплас выдвинул гипотезу о происхождении Солнечной системы (см. Лапласа гипотеза ), во многом сходную с гипотезой Канта. (Когда интересуются главным образом идеей естественного образования Солнечной системы из протяжённой рассеянной среды, часто говорят о единой гипотезе Канта — Лапласа.) Гипотеза Лапласа быстро завоевала признание и благодаря ей астрономия оказалась в числе наук, первыми внёсших идею развития в современное естествознание. Однако на протяжении 19 в. в гипотезе Лапласа выявлялись всё новые и новые трудности, преодолеть которые в то время не удалось. В частности, не удалось объяснить, почему современное Солнце вращается очень медленно, хотя ранее, во время своего сжатия, оно вращалось столь быстро, что происходило отделение вещества под действием центробежной силы.
В конце 19 в. появилась гипотеза американских учёных Ф. Мультона и Т. Чемберлина, предполагавшая образование планет из мелких твёрдых частиц, названных ими «планетезималями». Они ошибочно считали, что обращающиеся вокруг Солнца планетезимали могли возникнуть путём застывания вещества, выброшенного Солнцем в виде огромных протуберанцев. (Такое образование планетезималей противоречит закону сохранения момента количества движения.) В то же время в планетезимальной гипотезе были правильно обрисованы многие черты процесса образования планет. В 20—30-х гг. 20 в. широкой известностью пользовалась гипотеза Дж. Джинса , считавшего, что планеты образовались из раскалённого вещества, вырванного из Солнца притяжением пролетевшей поблизости массивной звезды (см. Джинса гипотеза ).
Идея об образовании звёзд путём сгущения рассеянного туманного вещества сохранилась до нашего времени и разделяется большинством исследователей. После открытия механического эквивалента тепла была подсчитана энергия. освобождающаяся при сжатии звезды (Г. Гельмгольц , 1854; У. Томсон , 1862). Оказалось, что её хватило бы для поддержания излучения Солнца в течение 107 —108 лет. В то время такой срок казался достаточным. Но позже изучение истории Земли показало, что Солнце излучает несравненно дольше. В начале 20 в. проблему источников энергии звёзд безуспешно пытались решить с помощью радиоактивных элементов, в то время лишь недавно открытых. Установление взаимосвязи массы и энергии, показавшее, что звёзды, излучая, теряют массу, привело к гипотезам о возможности аннигиляции вещества в недрах звёзд, т. е. превращения вещества в излучение. В этом случае превращение массивных звёзд в звёзды малой массы длилось бы 1013 —1015 лет. Правильной оказалась гипотеза о трансмутации элементов, т. е. об образовании более сложных атомных ядер из простых, в первую очередь — гелия из водорода. В 1938—39 были выяснены конкретные ядерные реакции, могущие обеспечить излучение звёзд [К. Вейцзеккер (Германия), Х. Бете ], и это явилось началом современного этапа развития звёздной К.
В разработке К. галактик делаются лишь первые шаги. Проводится классификация галактик и их скоплений. Изучаются эволюционные изменения звёзд и газовой составляющей галактик, их химического состава и др. параметров. Изучается природа начальных возмущении, развитие которых привело к распаду расширяющегося газа Метагалактики на отдельные сгущения. Рассчитывается, как зависят морфологический тип и др. свойства галактик от массы и вращения этих первичных сгущений. Большое внимание привлекают компактные плотные ядра, имеющиеся у ряда галактик. Изучается природа мощного радиоизлучения, которым обладают некоторые галактики, и связь его с взрывными процессами в ядрах. Мощные взрывы, происходящие в квазарах и ядрах активных галактик — сейфертовских, N-галактик и др., — представляют собой существенные этапы эволюции галактик. К. развивается, опираясь на большое количество фактов, охватывающих самые различные свойства небесных тел.