В США экспериментальные работы с ЖРД были начаты Р. Годдардом в 1921, а пуски жидкостных ракет производились с 1926. В Германии стендовые испытания двигателей этого класса начаты Г. Обертом в 1929, а летные испытания жидкостных ракет — И. Винклером в 1931. Во время 2-й мировой войны 1939—1945 Германия использовала жидкостные ракеты с дальностью полёта 250—300 км (ракета V-2 конструкции В. фон Брауна ) Потенциальные возможности нового оружия побудили многие страны форсировать работы по ракетной технике после войны, в результате чего были созданы межконтинентальные и др. баллистические ракеты, снабженные ядерными боеголовками. Эти работы косвенным образом способствовали созданию необходимой технической базы К.

  Космическая эра. Начало космической эры — 4 октября 1957, дата запуска в СССР первого искусственного спутника Земли (ИСЗ). Вторая важнейшая дата космической эры —12 апреля 1961 — день первого космического полета Ю. А. Гагарина , начало эпохи непосредственного проникновения человека в космос. Третье историческое событие К. — первая лунная экспедиция 16—24 июля1969, выполненная Н. Армстронгом , Э. Олдрином и М. Коллинзом (США).

  Космические аппараты созданы и используются в ряде стран: в СССР с 1957, в США с 1958, во Франции с 1965, в Японии и КНР с 1970, в Великобритании с 1971. О масштабах работ, ведущихся по К., можно судить по количеству, например, советских искусственных спутников Земли, Солнца, Луны и Марса, число которых на 1 июля 1973 составляло 742 при массе 2233 т, или 4388 т вместе с конечной ступенью ракет-носителей; 2-я космическая скорость сообщена 41 объекту массой 110 т, а вместе с конечной ступенью ракеты 167 т. Аналогичный масштаб приобрели работы по К. в США. На 1 мая 1973 космические полёты совершили 25 советских космонавтов на 18 кораблях и орбитальной станции «Салют», 38 американских космонавтов на 27 орбитальных кораблях; число ИСЗ, выведенных на орбиты др. странами: 7 — Франция, 4 — Япония, 2 — КНР, 1 — Великобритания.

  Основоположником практической К. является С. П. Королев. К 1957 под его руководством был создан ракетно-космический комплекс, позволивший запустить первый искусственный спутник Земли, а затем был осуществлен вывод на околоземные орбиты ряда автоматически управляемых космических аппаратов; к 1961 был отработан и запущен космический корабль «Восток», на котором совершил первый полёт Ю. А. Гагарин. Королев руководил разработкой автоматических межпланетных станций для исследования Луны (вплоть до «Луны-9», совершившей первую мягкую посадку на Луну), первых экземпляров космических аппаратов «Зонд» и «Венера», космического корабля «Восход» (первый многоместный корабль, из которого совершен первый выход человека в космическое пространство) и т. д. Не ограничивая свою деятельность созданием ракет-носителей и космических аппаратов, Королев осуществлял общее техническое руководство работами по обеспечению первых космических программ. Важный вклад в развитие советской ракетно-космическое техники сделан также конструкторскими бюро, возглавляемыми М. К. Янгелем, Г. Н. Бабакиным, А. М. Исаевым, С. А. Косбергом и др. Под руководством В. П. Глушко (основатель и руководитель ГДЛ — ОКБ) разработаны мощные ЖРД, установленные на всех советских ракетах-носителях, летавших в космос (1957—73).

  Современная теория космических полётов основана на небесной механике и теории управления движением летательных аппаратов. В отличие от классической небесной механики, новое направление называется астродинамикой . К. потребовала разработки оптимальных траекторий космических летательных аппаратов (выбор времени старта и вида траектории, исходя из требования минимальных затрат топлива ракеты-носителя) с учётом эволюции этих траекторий под действием возмущающих сил (особенно гравитационных полей, эффекта аэродинамического торможения от взаимодействия космического аппарата с разреженными верхними слоями атмосферы для искусственных спутников планет и под действием солнечного давления для межпланетных перелётов). Требование оптимальности приводит иногда к достаточно сложным траекториям — с длительными перерывами в работе ракетных двигателей носителя (например, при старте к Луне, Марсу и Венере осуществляется вывод космического аппарата на траекторию ИСЗ и лишь затем к планете) и с использованием гравитационного поля небесных тел (например, при полёте к Луне с целью изгиба траектории, необходимого для возвращения к Земле без запуска ракетного двигателя).

  Важный раздел астродинамики — теория коррекций траекторий полёта. Отклонение фактической траектории от расчётной связано с двумя факторами: искажением траектории возмущающими силами, которые невозможно учесть заранее (например, торможение ИСЗ атмосферой, плотность её изменяется нерегулярно), и неизбежными при технической реализации малыми ошибками в скорости и направлении полета космического аппарата в момент выключения двигателей носителя (эффект ошибок постепенно нарастает при межпланетных полётах). Коррекция заключается в кратковременном включении ракетного двигателя для исправления траектории. В теории коррекции рассматриваются вопросы оптимальности коррекционного маневра (наивыгоднейшее число, расположение точек коррекций на траектории и т. п.). Для выполнения коррекций и манёвров необходимо знание фактической траектории полёта космического аппарата. Если определение фактической орбиты производится на борту летящего аппарата, то оно является составной частью автономной навигации и состоит из измерения углов между звёздами и планетами, расстояний до планет, времени захода и восхода Солнца и звёзд относительно края планет и т. п. и обработки измеренных данных по методам небесной механики на бортовой вычислительной машине.

  Создание ракетно-космических комплексов — сложная научно-техническая проблема, Большие ракеты-носители достигают стартовой массы до 3000 т и имеют длину свыше 100 м. Для размещения в них необходимых запасов топлива (90% полной массы) конструкция ракет должна быть чрезвычайно лёгкой, что достигается рациональными конструктивными решениями и разумным снижением требований к запасам прочности и жёсткости. В полёте, по мере расходования топлива, опорожнённые части баков становятся излишними, их дальнейший разгон требует неоправданного расхода топлива, и поэтому оказывается целесообразным создавать многоступенчатые конструкции носителей (обычно от 2 до 4 ступеней); ступени ракеты отбрасываются последовательно, по мере опорожнения баков, Современная ракета-носитель представляет собой сложный комплекс устройств, из которых наиболее важны двигательная установка и система управления. Обычно применяют химические жидкостные ракетные двигатели, реже на твёрдом топливе; двигатели, основанные на потреблении ядерной энергии, находятся (1973) ещё в стадии экспериментальных исследований, однако, несомненно, что использование в будущих космических экспедициях ядерной энергетики вполне реально. Пилотируемые полёты к Марсу с высадкой человека на его поверхность и др. аналогичные космические программы требуют огромных энергетических затрат, которые возможно реализовать лишь при использовании ядерных источников энергии совместно с химическими. Мощность двигательных установок ракет-носителей измеряется десятками млн. квт. Разработка мощных и экономных ракетных ЖРД для носителей направлена на выбор энергетически оптимальных топлив и обеспечение достаточно полного сжигания их в камере сгорания при высоких давлениях и температурах. При этом приходится решать трудные задачи охлаждения работающего двигателя, создавать устойчивость процесса горения в нём топлива и многое др.

  Двигательные установки носителей, как правило, состоят из нескольких двигателей, синхронизация работы которых ведётся системой управления. Системы управления движением обычно автономные, т. е. работающие без вмешательства наземных пунктов. Они состоят из гироскопических и др. датчиков первичной информации, измеряющих мгновенное угловое положение носителя и действующие на него ускорения. Вычислительная машина определяет по этой информации фактическую траекторию и ведёт управление таким образом, чтобы к моменту выключения ракетных двигателей получить нужную комбинацию координат ракеты и её вектора скорости. Управление угловым положением носителя усложняется малой жёсткостью его конструкции и большой долей жидких масс в нём. Поэтому оно ведётся с учётом изгибных колебаний корпуса и колебательного движения жидких масс в баках.