Неожиданные появления необычных небесных светил, какими представляются яркие К., всегда производило сильное впечатление. Поэтому неудивительно, что появления К. суеверные люди принимали за разного рода предзнаменования, связывали их с различными земными событиями, причём в разных местах — с разными. Так, появление яркой К. в 1811— 1812 в России связывалось с нашествием полчищ Наполеона, в Испании — с хорошим урожаем винограда, в Мексике — с открытием серебряных руд и т.п.
Количество К. в Солнечной системе чрезвычайно велико: их число, по-видимому, достигает сотен миллиардов. Однако наблюдениям доступно лишь небольшое число К., заходящих внутрь орбиты Юпитера. Так, в 1850—1949 в среднем наблюдалось по 5 прохождений К. через перигелий ежегодно (из них лишь одно, видимое невооружённым глазом). В последующие 20 лет (1950—69), вследствие интенсификации поисков К., это число возросло до 9 прохождений за год. В табл. 1 приведён список наиболее ярких К. 19 и 20 вв. и указаны их наибольшие звёздные величины (где они известны).
По международному соглашению К. первоначально обозначаются годом открытия и буквой латинского алфавита в порядке поступления сообщения об их открытии.
После надёжного определения их орбит эти предвариттельные обозначения заменяются окончательными, содержащими год, порядковый номер (римская цифра) прохождения К. через перигелий и имя открывшего её наблюдателя (или наблюдателей). См. Ахмарова — Юрлова комета , Белявского комета , Биэлы комета , Джакобини — Циннера комета , Донати комета , Икея — Секи комета , Лекселя комета , Морхауза комета , Неуймина кометы , Шайна комета , Энке — Баклунда комета .
Табл. 1.— Большие кометы
Кометы | Наибольшая видимая звездная величина | Кометы | Наибольшая видимая звездная величина |
1811 I | +1 | 1882 II | -17 |
1823 | 1901 II | -2 | |
1843 I | -7 | 1910 I | -5 |
1858 VI | +0,2 | 1910 II Галлея | -1 |
1861 II | -4 | 1927 IX | -6 |
1874 III | 1947 XII | -2 | |
1880 I | 1948 XI | ок. +1 | |
1881 II | 1957 III | +2 |
Блеск К. изменяется в больших пределах. Самой яркой из известных была К. 1882 II, подходившая к Солнцу на очень небольшое расстояние. Её блеск в перигелии достигал —17 звёздной величины, т. е. она давала в 60 раз больше света, чем Луна в полнолуние. Она была самым ярким небесным объектом после Солнца и была хорошо видна днём вблизи поверхности Солнца. Однако большинство К. видно только в телескопы.
Блеск К. быстро увеличивается с изменением её расстояния r от Солнца и зависит также от её расстояния D от Земли. Звёздная величина т головы К. может быть представлена эмпирической зависимостью т = то + 5 lg D + 2,5 т lg r. Советский астроном Б. Ю. Левин, на основании физических соображений, установил иную зависимость: т = А + В (r + 5 lgD. В этих формулах то — абсолютный блеск, n, А и В — постоянные, у большинства К. n »4, т. е. свечение головы К. изменяется приблизительно обратно пропорционально r4 . На регулярное изменение блеска К. с изменением r накладываются иногда неправильные колебания, которые, возможно, связаны с солнечной активностью. У многих периодических К. наблюдается вековое ослабление блеска, которое объясняют исчерпыванием запасов светящегося вещества.
Орбиты комет . К 1971 вычислено около 1 тыс. систем элементов орбит для почти 600 К. Результаты вычислений публикуются в специальных каталогах. Так, каталог Портера содержит сведения о появлениях К. в годы от 239 до н. э. до 1961 н. э.; всего в нём упоминается 829 появлений 566 индивидуальных К., среди которых 54 короткопериодических (с периодами р<200 лет), наблюдавшихся при двух и более приближениях к Солнцу; 40 короткопериодических, наблюдавшихся только при одном приближении; 117 долгопериодических (с р > 200 лет); 290 К. с параболическими орбитами; 65 К. с гиперболическими орбитами, которые, удаляясь от Солнца, навсегда покидают Солнечную систему, уходя в межзвёздное пространство. Большинство орбит, считающихся параболическими, в действительности, по-видимому, сильно вытянутые эллиптические, для них, однако, эксцентриситет не мог быть определен из-за недостаточной точности наблюдений. Гиперболические же орбиты являются результатом возмущающего действия больших планет, преимущественно Юпитера, на движение К. Анализ движения таких К. в минувшие годы привел к заключению, что до момента, когда каждая из таких К. начала испытывать заметное возмущающее влияние планет, она приближалась к Солнечной системе по эллиптической орбите. Прохождения К. вблизи больших планет приводят к резким изменениям орбит К. Например, К., открытая финским астрономом Л. Отермой в 1942 и двигавшаяся до 1963 между орбитами Марса и Юпитера, перешла после сближения с Юпитером на новую орбиту, лежащую между орбитами Юпитера и Сатурна.
Табл. 2.— Элементы орбит некоторых комет
Комета | Время последнего прохождения перигелия Т | р | е | i | Долгота восходящего узла | Расстояние перигелия от узла w | q | Q | Примечания |
1970 I Энке | 1971 январь, 9,92 | 3,302 | 0,847152 | 11°, 9747 | 334°, 2224 | 185°,9383 | 0,338897 | 4,09 | Самая короткопериодическая |
1957 IV Швассмана-Вахмана I | 1957, май, 12, 89 | 16,10 | 0,131488 | 9,4872 | 321,6094 | 355,8271 | 5,53774 | 7,21 | е |
1910 II Галлея | 1910, апрель, 20, 18 | 76,1 | 0,967297 | 162,2158 | 57,8466 | 111,7190 | 0,587212 | 35,31 | Первая К. для которой определена орбита |
1965 VIII Икея-Секи (главное ядро) | 1965, октябрь, 21, 18 | 874 | 0,999915 | 141, 8576 | 346,2963 | 69,0499 | 0,007785 | 183 | «Задевающая Солнце» |
В движении ряда К., в первую очередь короткопериодических, обнаружены также эффекты, не объяснимые притяжением их известными телами Солнечной системы (так называемые негравитационные эффекты). Так, одни К. испытывают вековое ускорение, а другие — вековые замедления движения, являющиеся, по-видимому, результатом реактивного эффекта от выделяющихся из ядра потоков вещества.
Короткопериодические К. принято делить на «семейства» по величине афелийных расстояний. К наиболее многочисленному семейству Юпитера относят К., афелий которых расположен около орбиты Юпитера. К семейству Сатурна относят К. с афелиями вблизи его орбиты. Интересную группу К., «задевающих Солнце», образуют несколько долгопериодических К. Все они имеют очень малые перигелийные расстояния, в пределах 0,0055—0,0097 а. е. (т. e. их перигелии удалены от поверхности Солнца на 0,5—1 радиус Солнца), и примерно одинаковые остальные элементы орбиты. Весьма вероятно, что эти К. — продукты распада одной материнской К.
В табл. 2 приведены элементы орбит некоторых К.
Строение комет. По современным представлениям, ядра К. состоят из водяного газа с примесью «льдов» других газов (СО2 , NH3 и др.), а также каменистых веществ. Пылинки частично выделяются из ядра при испарении (сублимации) льдов, частично образуются в его окрестностях в результате конденсации молекул нелетучих и умеренно летучих веществ. Пылевые частицы рассеивают солнечный свет, атомы же и молекулы газов поглощают излучения в некоторых длинных волнах и из освещающего солнечного света, а затем переизлучают их. В результате выделения из нагретого Солнцем ядра газа и пылинок возникает реактивная сила, которая, возможно, порождает негравитационные эффекты в движении К. Интенсивное выделение происходит из наиболее нагретого участка поверхности ядра, который, вследствие вращения ядра, расположен не точно с солнечной стороны, а несколько смещен в сторону вращения. В результате появляется компонента реактивной силы, которая либо ускоряет движение К., если вращение ядра происходит в том же направлении, что и обращение К. около Солнца, или замедляет его, если вращение и обращение происходят в противоположных направлениях.